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Abstract. When developing a causal probabilistic model, that is, a Bayesian 

network (BN), it is common to incorporate expert knowledge of factors that 

are important for decision analysis, but there are models where historical 

data is not available or difficult to obtain, or it is difficult to have a human 

expert nearby to help. This document explains how data is developed from a 

discrete/continuous simulated variable through a BN and mixed integer-

linear programming (MILP), and the impact of this variable is measured as 

an important element for the decision-making model. Consider as an 

additional expert variable. The CBR model and the variable in question is 

contextualized to support in the decision-making process in a supply chain 

through two stages, the first is considered multiple factories, with multiple 

distribution centers (DC) and second, from the multiple distribution centers 

as it reaches multiple points of sale. As a design of a decision support 

system for the construction of a supply chain network (SCN) for a range of 

multiple end products, as well as the determination of factories and 

distribution centers, it also helps in the design of the distribution network 

strategy that satisfies all the capacities and requirements of demand of the 

product imposed through the points of sale. At the end of the work, an 

evaluation of the performance of two Bayesian networks is carried out, 

where one of them represents the incorporation of the expert variable using 

two methods, one of them the receiver operating characteristic (ROC) curve 

and two a method proposed by Constantinou et al. [2]., Where in both cases 

the Bayesian network gave a better performance with the expert variable. 

 

Keywords: making decisions, Bayesian networks, case-based reasoning, 

supply chain networks, mixed integer-linear programming. 
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1 Introduction 

Bayesian networks (BNs) [6] are rapidly becoming a leading technology in applied 

Artificial Intelligence. By combining a graphical representation of the dependencies 

between variables with probability theory and efficient inference algorithms, BNs 

provide a powerful and flexible tool for reasoning under uncertainty. 

It has been argued that developing an effective BN requires a combination of 

expert knowledge and data [2]. Yet, rather than combining both sources of 

information, in practice, many BN models have been learned purely from data, while 

others have been built solely on expert knowledge.  

Supply chain management is a complex domain where experienced manager 

practitioners hold much of their knowledge implicitly, making an appealing target for 

expert systems development, using Case-based reasoning (CBR). The efficiency of 

case retrieval algorithm is determined and affected directly by the used method for 

case representation. As a result, it is more logical to introduce case retrieval methods 

after surveying the representation methods to link them together Accuracy in 

obtaining the beliefs of experts, it is often unrealistic to expect the expert to provide 

precise probability values. In this document we present an application of a 

methodology proposed by [2] to a case of a BN using the learning cause of an Expert 

System (ES) in combination to model problems of distribution in the Supply Chain 

Network (SCN). 

 

Fig. 1. Illustration where the Model M, with the data variables D and R, extends to the 

alternative Model M that incorporates the non-human expert variable X. Source: Constantinou  

et al., Integrating expert knowledge with data in Bayesian networks: Preserving data-driven 

expectations when the variables remain unobserved, 2006 [2]. 

Constantinou et al. [2] proposed a method for the evaluation of Bayesian networks, 

which is described below. The model M represents empirically observed data about 

the influence of . In the example in figure 1 , the states of  are the investment 

options {bonds, shares, properties} and  is the Network objective , expressed as an 

observed distribution of values for each different option.  

We assume that, from relevant data:  

(a)  is known  for each i = 1 , . . . , n, 
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(b)  is a known distribution for each i = 1 , . . . , n,  

Hence, these are the parameters of the model M. Let the expected value 

 for each i = 1 , . . . , n. For simplicity, we write this as 

. Hence, in model M the expected value of R is: 

 

(1) 

Now consider the revised BN model M’ , as shown in Fig. 1. Here X is an expert 

supplied variable with m states X 1 , . . . , X m . We assume the expert provides the prior 

probabilities for X , i.e. P ( X j | D i ) = p ij for each  and for each 

 . When D and X are not linked, then instead of n ×m priors we only 

need m priors  for each . The challenge for the expert is to 

complete the conditional probability table (CPT) for R in M’ in such a way as to 

preserve all of the conditional expected values of R given D in the original model M, 

and also preserve the marginal expectation. Specifically, we require: 

 
(2) 

Note that, if we can establish Eq. (2), then it follows from Eq. (1) that: 

 

Specifically, Eq. (2) is also sufficient to prove that the unconditional expected value -

the expected value of R when D is unobserved- of R is preserved in M’. 

Table 1. The CPT for R in M’. 

D      …       …      

X   …   …    …   …   …   

R   …   …    …   …   …   

The general form of the CPT for R in M’ can be written as a function , whose 

expected value is  for each i = 1 , . . . , n and j = 1 , . . . , m , as shown in Table 1. 

Specifically, 

 

Since each  is conditioned on we can use marginalization to compute: 

 

(3) 

Since by Eq. (2) we require: 

 

it, therefore, follows from Eq. (3) that we require: 
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(4) 

Eq. (4) thus expresses the necessary constraints on the expert elicited values for . 

We can use Eq. (4) as a consistency check on the expert elicited values if the user 

wishes to provide them all. However, in practice we would expect the user to provide 

a subset of the values and so use Eq. (4) to solve for the missing values. There is a 

unique solution in the case when the expert is able to provide  of the required 

m values 

. 

To prove this, without loss of generality suppose that is the ‘missing value’. Then 

we can compute the value of  necessary to satisfy Eq. (4) . We know, by Eq. (4), 

that: 

 

 
So: 

 

 
Thus: 

 
(5) 

For each i = 1, . . . , n Eq. (5) thus provides the formula for computing the missing 

CPT values necessary to preserve in the model M’ all of the conditional expected 

values of R given D in the original model M . 

2 The Role of Distribution in the Chain of Supply 

A supply chain is defined as a process with a complete set of activities wherein raw 

materials are transformed into final products, then delivered to customers by 

distribution, logistics, and retail. All inter-organizational practices such as planning, 

purchasing, distribution, delivery process, and reverse logistics are considered as a 

supply chain management system [21].  

3 Distribution Decisions 

Development of the new theories and methodologies in logistics and supply chain 

management can lead to the higher level intelligent and advanced systems. Such kind 

of systems enable supply chain experts to facilitate information-sharing, highly 
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qualified decisions and to increase the value to products and services by internal 

coordination. Over the last decades, the direction of decision support systems has 

changed drastically. To monitor the materials cost in a garment manufacturer, a 

decision support model has assisted decision-makers in selecting efficient ways to 

reduce total manufacturing costs. Decision making is influenced by the characteristics 

and context of decision situations [37] and it is viewed that understanding the 

characteristics of different types of organizational decision-making contexts is a 

prerequisite for understanding the nature of decision-making processes and 

requirements for decision support within different types of decision-making contexts.  

There are several ways to characterize different types of decision situations and their 

associated decision-making contexts within organizations.  

4 Case-Based Reasoning (CBR) 

A CBR system should be organized with some basic elements: the knowledge 

representation, to depict the cases, and the similarity measure to define how much a 

case is similar to another one [16, 17].  

 

Fig. 2. A process-oriented vision of the CBR adaptation cycle based on Aamodt and Plaza 

(1994) Source: Loera et al.  Implementation of an Intelligent Model for Decision Making Based 

on CBR for Supply Chain Solution in Retail for a Cluster of Supermarkets. 
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In figure 2, the tasks are shown with the names of the nodes in bold, while the 

methods are in italics.  

5 R based Framework for Distribution Planning  

5.1 Model Formulation 

The foundation of a CBR system is the representation and definition of a case. So far, 

there is no uniformed standard to represent a case [5]. The constituted model 

represents two echelons, multi-factories, multi-warehouse or distribution centers 

(DC), and multi-sales points. Decision maker wishes to design of supply chain 

network (SCN) [35] for the end product, determine the factories and DCs and design 

the distribution network strategy that will satisfy all capacities and demand 

requirement for the product imposed via sales points. The problem is a single-product, 

multi-stage SCN design problem. We formulated the SCN design problem as a 

Mixed-Integer Linear Programming model (MILP), [18]-[21], as is shown in figure 3.  

 

Fig. 3. Simple network of two-stages in supply chain network. 

5.2 Model Nomenclature 

The indices, parameters and decision variables of the mixed integer linear 

programming model are listed below: 

Index 

 Set of production facilities,  

 Set of product type, 

  Set of warehouse facilities (distribution centers), 

  Set of sales points. 

Parameters 

 Production cost in the factory  for the product , 
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  Distance between the factory  and the warehouse , 

 Cost of transporting the product  from the factory to the warehouse , 

  Distance between the sale point  and the warehouse , 

 Cost of transporting the product  from the sales point to the warehouse , 

 The  point of sale demand  for the product , 

  The  factory capacity  for the product , 

  Capacity of the warehouse , 

  The turnover rate for each product , 

Decision variables 

  The amount of product  that is transported from factory  to warehouse , 

  A binary variable taking value 1 when sale point   is associated with 

warehouse . 

Mathematical model proposed by Adrian Loera et al. in his PhD Thesis (2019): 

Minimize 

 

(6) 

Subject to: 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 (11) 

 
(12) 

 
(13) 

 
(14) 

 
(15) 

 
(16) 

 (17) 
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 (18) 

 
(19) 

 (20) 

 (21) 

5.3 Case Representation 

Therefore, taking into consideration of characteristics of SCN, the process case of 

distribution can be defined as a collection of : 

, 

where H is the case number, is the condition 

feature description of distribution and ={ } is the corresponding solution of 

distribution planning. The case representation of distribution planning in terms of 

condition features is shown in Table 2. 

Table 2. Distribution planning case presentation. 

Case representation of Distribution planning  

Case number (H): X 

Condition features of distribution problem(D) 

• Production cost in the factory  for the product  

• Distance between the factory  and the warehouse  

• Cost of transporting the product  from the factory to the warehouse .  

• Distance between the sale point  and the warehouse . 

• Cost of transporting the product  from the sales point to the warehouse  

• The  point of sale demand  for the product  

• The  factory capacity  for the product  

• Capacity of the warehouse  

• The turnover rate for each product  

Solution (S) 

• The amount of product  that is transported from factory  to warehouse . 

• A binary variable taking value 1 when sale point  is associated with warehouse  

6 Building a BN 

Irrespective of the method used, building a BN involves the following two main 

steps [2]:  

1. Determining the structure of the network: many of the real- world application. 

2. Determining the conditional probabilities (CPTs) for each node also, referred 

to as the parameters of the model. 
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Fig. 4. Bayesian network model to SCN (M model). 

6.1 Conditional Probabilities 

Once the topology of the BN is specified, the next step is to quantify the relationships 

between connected nodes – this is done by specifying a conditional probability 

distribution for each node, see table 3. 

Table 3. Conditional probability data (M model). 

final stage

State P(θ|x)* State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x)

Always 50% High 44% at_least_20 42% open 55% Long 37% open 57% Long 41% High 26%

Almost_always 5% Medium 44% more_than_21 58% close 45% Medium 21% close 43% Medium 18% Medium 31%

Frequently 3% Low 12% Short 42% Short 42% Low 43%

Occasionally 3%

Seldom 5%

Rarely 31%

Never 2%

100% 100% 100% 100% 100% 100% 100% 100%

State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x) State P(θ|x)

F80_and_CL 37% Exp. utility 76% High 41% High 59% from_1_to_5 49% High 15% F80_and_CL 37% approved 90%

F80_and_CM 19% Medium 41% Medium 21% from_6_to_10 16% Medium 27% F80_and_CM 19% no_approved 10%

F60_and_CL 28% Low 9% Low 20% from_11_to_20 19% Low 58% F60_and_CL 28%

F60_and_CM 10% Zero 9% more_than_20 16% F60_and_CM 10%

F50 3% F50 3%

CH 3% CH 3%

100% 76% 100% 100% 100% 100% 100% 100%

* Posterior marginal probability distribution P(θ|x)

Distribution WS

meet the 

customer's 

demand

Demand
Production 

capacity

Turnover
Warehouse 

capacity
Sales points warehouse

Products Production cost Distribution FW DistributionPlan

Distance  SW Transport costDistance FW factory

 

6.2 Parameter Learning 

The structure of the Bayesian network was imported into GeNie, a general-purpose 

Bayesian network commercial software [7] for the parameter learning stage.  

Likelihood maximization with randomized initial values for the parameters was 

used so that the process could be repeated from different starting points to avoid local 
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minima. The process was completed when the expectation maximization algorithm 

converted; that is when the negative log-likelihood had been minimized. 

BNs model the quantitative strength of the connections between variables, 

allowing probabilistic beliefs about them to be updated automatically as new 

information becomes available [8]-[11], and this can be observed in tables 5 and 7. 

Other outputs of the BN model are represented by the adjacency matrix, which 

represents a graph with vertices, that is, it is a matrix of  of zeros and 

ones, where the entry in line  and column  is 1 if and only if the corner  is in the 

graph. Case  is represented with an , as shown in tables 4 and 6. 

Table 4. Adjacency Matrix fo M model. 

Adjacency Matrix,
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Turnover

Warehouse capacity X

Sales points

warehouse

Distance FW X

factory

Distance  SW X

Transport cost X X

Distribution WS X X

meet the customer's 

demand

Demand X X

Production capacity X

Products X X

Production cost X X

Distribution FW X X

DistributionPlan X X X  

Table 5. Strength influence of M model. 

Parent Child Mean Maximum Weighted

Demand meet the customer's demand 0.56 1.00 0.56

Demand Sales points 0.08 0.20 0.08

Distance  SW factory 0.40 0.60 0.40

Distance FW warehouse 0.40 0.60 0.40

Distribution FW Production cost 0.23 0.40 0.23

Distribution FW Transport cost 0.16 0.45 0.16

Distribution WS Transport cost 0.15 0.31 0.15

Distribution WS Sales points 0.09 0.35 0.09

DistributionPlan Distribution FW 0.40 0.40 0.40

DistributionPlan meet the customer's demand 0.69 1.00 0.69

DistributionPlan Distribution WS 0.40 0.40 0.40

Production capacity Demand 0.00 0.00 0.00

Production cost Products 0.74 0.84 0.74

Production cost Production capacity 0.35 0.51 0.35

Products Demand 0.24 0.35 0.24

Products Warehouse capacity 0.19 0.29 0.19

Transport cost Distance  SW 0.51 0.73 0.51

Transport cost Distance FW 0.61 0.84 0.61

Warehouse capacity Turnover 0.53 0.78 0.53

Strength influence

 

7 Knowledge Engineering Bayesian Networks (KEBN) 

Knowledge Engineering can be viewed as an engineering discipline that involves 

integrating knowledge into computer systems in order to solve problems normally 

requiring a high level of human expertise. Similarity assessment techniques (e.g., 

[17]). The combination is the focus of this article, with the peculiarity that the human 

expert is replaced by the expert machine, i.e. the CBR [7,9,14,15]. 
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7.1 Integrated BN with CBR 

The problem we are interested in solving is the general case where a discrete expert 

variable -CBR- is inserted into a BN model as a parent of a discrete/continuous data 

variable, see figure 5. However, when the data variable is discrete some limitations 

apply proposed per Constantinou et al. [2]. 

7.2 Data Analysis 

Descriptive statistics, Bayesian networks, and Receiver Operating Characteristic 

(ROC) curve analysis are used in this study for further investigation of the 

relationships between variables; This is detailed below. 

  

Fig 5. Integrated BN with CBR (M’ model). 

Table 6. Adjacency Matrix integrated BN and CBR (M’ model). 
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ExpertSystem

Turnover

Warehouse capacity X

Sales points

warehouse

Distance FW X

factory

Distance  SW X

Transport cost X X

Meet the customer's 

demand

Demand X X X

Production capacity X

Products X X X

Production cost X X X

Total cost X X X

Distribution WS X X

Distribution FW X X

DistributionPlan X X X X  
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Table 7. Strength influence integrated BN and CBR (M’ model). 

Parent Child Average Maximun Weighted

Demand meet the customer's demand 0.56 1.00 0.56

Demand Sales points 0.08 0.20 0.08

Demand ExpertSystem 0.02 1.00 0.02

Distance  SW factory 0.40 0.60 0.40

Distance FW warehouse 0.40 0.60 0.40

Distribution FW Total cost 0.31 0.76 0.31

Distribution FW ExpertSystem 0.01 1.00 0.01

Distribution WS Total cost 0.23 0.58 0.23

Distribution WS Sales points 0.09 0.35 0.09

DistributionPlan Distribution FW 0.40 0.40 0.40

DistributionPlan Distribution WS 0.40 0.40 0.40

DistributionPlan meet the customer's demand 0.67 1.00 0.67

DistributionPlan ExpertSystem 0.01 1.00 0.01

Production capacity Demand 0.00 0.00 0.00

Production cost Products 0.74 0.84 0.74

Production cost Production capacity 0.35 0.51 0.35

Production cost ExpertSystem 0.01 1.00 0.01

Products Demand 0.24 0.35 0.24

Products Warehouse capacity 0.19 0.29 0.19

Products ExpertSystem 0.00 1.00 0.00

Total cost Production cost 0.19 0.41 0.19

Total cost Transport cost 0.20 0.33 0.20

Total cost ExpertSystem 0.02 1.00 0.02

Transport cost Distance  SW 0.51 0.73 0.51

Transport cost Distance FW 0.61 0.84 0.61

Warehouse capacity Turnover 0.53 0.78 0.53

Strength of influence

 

8 Evaluation Method 

The expression “evaluation of a BN” could, in short, be defined as “estimation of the 

performance of a BN” or “estimation of the quality of recommendations obtained by 

using a tool based on a BN”[12]. Evaluation constitutes a requisite for the practical 

application of BNs. Conventional BN evaluation consists of obtaining a set of cases 

from records or from experts, querying the network for a diagnostic or predictive 

recommendation for each case, and determining how well the recommendations agree 

with the actual results known for the cases [1]-[6], [12]-[13]. There are two important 

issues with regard to the evaluation process of a BN: on the one hand, the selection of 

the cases and, on the other hand, the method for measuring the performance. The 

cases can be obtained in two different ways: 

  From the BN itself, or 

  From a database or with the help of an expert in the domain. 

The assessment of performance can be addressed following two distinct strategies: 

  By relying on expert opinion to judge the results produced by the BN, or 

  By executing a mathematical method whose entries are the cases available and 

the inferential results. 

9 Empirical Results with Constantinou Method  

The BN model M and the data-based background are shown for the type of 

distribution planning (D) and conditional distribution for the solution variables in 

Table 2 (R). We assume that there is an expert glider. Then R is represented by a set 

of Condition features of distribution problem described in Table 2. Suppose expert 

node X now includes states or , (where k ≥1) that have been observed. In 

this case, the problem is that, instead of having to keep the expected value so that: 
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, 

we only have to ensure that: 

. 

So, Eq. (5) needs only to preserve the data-driven network in model  under the 

states of  for which the expert assumes that they are indirectly captured by data and 

hence, ignore any  . This implies that the states ,  which are 

assumed not to have been captured by data, will now have added impact on  . 

Therefore, equation (2) and calculating each of the factors that we obtain the results 

in terms of a conditional probability: 

, , thus, . 

Therefore the final reasoning is that the network based on data in the  model 

under the states of  for which the expert assumes that they are captured by a CBR 

involving the states  of . There is no evidence to say that they are the 

same, so it is concluded that there is a different impact on  in each  and model. 

In our case the conditional probability for the approval of a distribution plan obtained 

in the  model is adjusted, so it is realistic that the conditional probability of the 

 model. 

10 Empirical Results with ROC 

 

Fig. 6. Comparison of ROC and AUC. 

The original Bayesian network obtained an overall model accuracy of 79.3% on 

validation data and the integrated Bayesian network obtained a slightly higher 

accuracy of 82.9% (figure 6). 

11 Discussion and Conclusions 

This research presented an application of a methodology to construct decision support 

models for BN through the incorporation of a CBR. The main contribution of this 
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application was the incorporation of an ES to a Bayesian network. Applying the 

integrated Bayesian network learning method could obtain greater accuracy than the 

original Bayesian network learning method, due to the fact that there are more 

interconnections between nodes compared to the more dispersed network of the 

original method. However, the improvement in overall accuracy was only 3.6%. 

12 Future Research 

Bayesian networks are now well established as a modeling tool for expert systems in 

domains with uncertainty. The reasons are its powerful but conceptual transparent 

representation for probabilistic models in terms of a network, there is no doubt of 

applicability, the persistent problem is the lack of data, so the recommendation is to 

apply methods that allow incorporating rare or never seen events and give them a 

treatment so that in the expectations based on the data of the model, under the 

assumption that these rare or not observed events known are not established as false 

within the model. 
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